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Abstract. A new approach is proposed for enclosing all stationary states, including saddle points
of all orders, of a potential energy surface based on theαBB deterministic branch and bound global
optimization algorithm. This method is based on rigorous optimization methods and offers a the-
oretical guarentee of enclosing all solutions to the equation∇V = 0. This method is applied to
the ECEPP/3 (Empirical Conformational Energy Program for Peptides) potential energy surfaces of
unsolvated and solvated tetra-alanine. By analyzing the topography of the potential energy surfaces,
we calculate reaction pathways, transition rate matrices, time-evolution of occupation probabilities,
and rate disconnectivity graphs, and we identify appropriate criteria for the selection of a reaction
coordinate.
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1. Introduction

The protein folding problem is a very important problem in computational chem-
istry and molecular biology. The ability of a protein to function properly within
the cell depends on its tertiary structure. Considering how precisely and reliably a
protein shapes itself to perform its specific task, very little is understood about the
mechanism of protein folding. Better understanding and insight on the mechanism
of protein folding are of major importance.

A promising approach to understanding protein folding is the study of its po-
tential energy surface. The first step in the study of any potential energy surface
is the identification of stationary points (local minima and saddle points), since
these points play a crucial role in defining the topography of the surface. The local
minima represent stable configurations of the protein molecule, and the first-order
saddle points generally correspond to transition states which connect two such
configurations. A protein-folding process can be thought of as a transition between
two local minima through a transition state, or a series of such transitions.

We study further a recently proposed approach [1] of finding all stationary
points of a given potential energy surface based on theαBB deterministic branch
and bound type global optimization algorithm [2–6]. This is an application of the
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more general method of finding all solutions to systems of non-linear equations
described in [2], which we will describe in Sections 2 and 3.

Once the minima and saddles have been located, we follow each saddle point
back to the two minima it connects. It is worth noting that searching downhill from
transition states towards minima is always more reliable than searching uphill from
a given minimum towards a first-order transition state. If one has already located
all of the first-order transition states, it is not necessary to start at the minima and
proceed uphill. After determining the connectivity of the potential energy surface,
transition rates between minima can be calculated using the Rice–Ramsperger–
Kassel–Marcus (RRKM) theory [7, 8].

The transition rates can be used to calculate occupation probabilities for each
state as a function of time given some specific initial condition (such as the system
occupying a particular state with probability 1). This gives us a direct indication of
how long it takes for a protein prepared in a given unfolded (excited) state to reach
its folded (ground) state. It is also possible to calculate the time evolution of other
quantities, such as average energies, atomic distances, and (dihedral) angles.

The connectivity of the potential energy surface can be understood by enumer-
ating the reaction pathways. Reaction pathways are obtained by joining minimum–
saddle–minimum ‘triples’ together in chains. These pathways represent the protein
folding mechanism and are very important in understanding how the protein folds.

Becker and Karplus proposed a graphical representation of the topography of a
potential energy surface [9] based on the connectivity tree originally introduced by
Czerminiski and Elber [10]. They define a finite energy (temperature) generaliza-
tion of the ‘catchment region’. As the energy (temperature) is increased, regions
that were once disconnected by high barriers begin to merge. This coalescence
process is described by means of a ‘energy (temperature) disconnectivity graph’.
The shape of the disconnectivity graph reveals an enormous wealth of dynamical
information. We extended this idea in [1] by constructing a ‘rate disconnectiv-
ity graph’ which is based on transition rates, rather than energy levels or barrier
heights.

We have applied these methods to the Murrel-Sorbie analytic potential en-
ergy surfaces of triatomic molecules and to the ECEPP/3 (Empirical Conforma-
tional Energy Program for Peptides) potential energy surfaces of alanine, alanine
dipeptide, and unsolvated and solvated tetra-alanine. A full analysis of the triatomic
molecules, alanine, alanine dipeptide, and unsolvated tetra-alanine can be found
in [1]. In Sections 4 and 5 of this paper, we study the unsolvated and solvated
tetra-alanine.

2. Problem formulation

Stationary points of all orders (i.e., minima, maxima, first order and higher order
transition states) of a given potential energy surfaceV (x) are determined by the
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constraints

∂V

∂xi
= 0 , i = 1, . . . , Nx (1)

whereNx is the number of variables:x = (x1, . . . , xNx ).
Equation (1) can be re-expressed as a global optimization problem by introdu-

cing a slack variables and minimizing its value over an augmented variable set
(x, s) subject to a set of relaxed constraints:

min
x,s
s

subject to ∂V/∂xi − s 6 0 , i = 1, . . . Nf
−∂V/∂xi − s 6 0 , i = 1, . . . Nf

xL 6 x 6 xU (2)

Note that (2) is infeasible fors < 0 and reduces to (1) fors = 0. It follows thats =
0 is theglobal minimumof (2), provided of course that (1) has solutions, and that
there is a one-to-one correspondence between global minima of (2) and solutions
to (1). Therefore, the problem of finding all solutions to (1) can be reformulated as
the problem of finding all global minima of (2). We will exploit this fact in the next
section where we explain how theαBB global optimization algorithm [1–6] can be
used to find all solutions to (1).

3. TheαBB global optimization approach

In this section, we describe theαBB global optimization algorithm [1–6] as it
applies to the problem of finding all stationary points of a potential energy surface.
This adaptation is based on the correspondence between solutions of (1) and global
minima of (2) with s = 0. TheαBB algorithm can actually be used to find all
solutions to any system of non-linear equations, assuming only that the constraints
are twice continuously differentiable (C2). For a more complete explanation of the
αBB algorithm, see [1].

The algorithm proceeds by exploring the configuration space for stationary
points (i.e., solutions to (1)). We begin with the full regionx ∈ [xL, xU ], and
subdivide regions into smaller regions. Each region is tested before it is divided
to see if a stationary point can possibly exist there. This is accomplished by finding
a lower bound of the global minimum of (2) over the region in question. If the
lower bound is positive, thens = 0 cannot lead to a feasible point of (2), and
hence no solution to (1) can exist in the given region. The region will be fathomed
(i.e., eliminated from further consideration). On the other hand, if the lower bound
is negative or zero, there may or may not be a stationary point in that region. In
this case, further subdivision and testing will be necessary. Once the region size
becomes small enough, the stationary point is sought by performing a local search
in that region. The algorithm terminates when all regions have been fully processed.



264 K.M. WESTERBERG AND C.A. FLOUDAS

Lower bounds of the global minimum of (2) are determined by solving the
lower bounding problemover the given region. In the lower bounding problem,
each constraint in (2) is replaced by aconvex underestimator, which is obtained
from the original constraint by subtracting off a sufficiently large quadratic term.

min
x,s
s

subject to ∂V/∂xi − α+i
∑
k

(xUk − xk)(xk − xLk )− s 6 0

−∂V/∂xi − α−i
∑
k

(xUk − xk)(xk − xLk )− s 6 0

xL 6 x 6 xU (3)

If the coefficientsα±i are chosen to be positive and sufficiently large, the global
minimum of (3) will be a valid lower bound of the global minimum of (2), and can
be obtained by any local optimization package since (3) is a convex problem.

The basis of theαBB algorithm is the selection of valid values ofα±i . The lower
bounding problem will be convex only if the Hessian matrix associated with each
constraint in (3) is positive definite. The quadratic terms were introduced to over-
power the non-convexities of the original constraints in (2). This is accomplished
provided thatα±i satisfy the following inequalities:

α+i > −
1

2
min

x∈[xL,xU ]
{λk(H∂V/∂xi (x)),0}

α−i > +
1

2
max

x∈[xL,xU ]
{λk(H∂V/∂xi (x)),0} (4)

Calculating values ofα±i according to (4) is difficult in general because the
Hessian matricesH∂V/∂xi depend onx. If the selected values ofα±i are too small
(the inequalities are not satisfied), the ‘convex underestimators’ will not be convex
after all, and thus there is no guarantee that using a local optimization solver will
yield the global minimum of the lower bounding problem. Lower bounds generated
this way may not be valid. On the other hand, if the selected values are too large,
the underestimators will be convex, but they will be very loose. This may lead to
poor computational performance of the algorithm.

A simplified method of calculatingα±i is to start with small values ofα±i (e.g.,
α±i = 5) and increase the values ofα±i until no new solutions are found. This can be
a practical solution to many problems where the correct values ofα±i are difficult to
determine. However, this method has the one serious drawback in that it sacrifices
the theoretical guarantee of findingall solutions. In spite of this fact, we were able
to identify all minima and first-order transition states using modest values ofα±i for
alanine, alanine dipeptide, and tetra-alanine. The tetra-alanine results are described
in Sections 4 and 5.

A more robust method involves calculating the Hessian matricesH∂V/∂xi at vari-
ous grid points to get a sample of requiredα±i values. First we select a grid,{xk}.
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Table 1. Eigenmode III results for unsolvated tetra-alanine

48 grid 68 grid

Local minima 16125 62373

1st-order saddles 18902 212938

Then we evaluate the Hessian for each constraint at each grid point,H∂V/∂xi (x
k),

and use (4) to determine precomputed values ofα±i (xk) at each grid-point. During
the αBB run, appropriate values ofα±i for a given region are determined by se-
lecting the maximumα±i over all grid-points contained in the region. This method
of generatingα±i was used when we studied triatomic molecules. The results are
discussed in [1].

It should be noted that the generation of values ofα±i that are theoretically
rigorous can be made based on the recent work of [5, 6].

4. Computational studies: Unsolvated tetra-alanine

We first studied tetra-alanine in vacuum. We used the ECEPP/3 potential energy
surface [11], fixing all bond lengths and bond angles to their equilibrium values,
and allowing only the eight(φ,ψ) dihedral angles to vary.

Tetra-alanine is one of the smallest peptides which can exhibit a full alpha-
helical turn (corresponding to(φi, ψi) = (300◦,300◦)), as well as an extended con-
formation (a beta sheet conformation corresponding to(φi, ψi) = (300◦,120◦)).
We studied unsolvated tetra-alanine in [1], and in this paper we present results on
both solvated and unsolvated tetra-alanine.

We first obtained a testbed of minima and first-order saddles by applying a brute
force eigenmode-following search (Eigenmode III [12–17]) using a grid of starting
points. The results of our search are summarized in Table 1.

We first laid down a 48 grid of starting points and performed minimum and
first-order saddle searches from each point. The transition states were then fol-
lowed down to the minima they connect, resulting in additional minima found. The
analysis of the 16125 minima and 18902 first-order saddles obtained from the 48

grid can be found in [1].
In this work, we considered a 68 grid of starting points and performed first-order

saddle searches from each point. The minima were obtained by following each
transition state down to the minima they connect. The results were then merged
with the 48 grid results. The analysis of the 62373 minima and 212938 first-order
saddles obtained from the 68 grid is presented in this paper.

We subdivided the(φ,ψ) plane into regions and classified them according to
Table 2. Values of(φ,ψ) corresponding to alpha-helix formation are classified as
‘a’, and values of(φ,ψ) corresponding to beta-sheet formation are classified as
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Table 2. Classification scheme for(φ,ψ) pair

Symbol ψ Decoration φ

a 270◦ 6 ψ 6 335◦ No prime 270◦ 6 φ 6 330◦
i 335◦ 6 ψ orψ 6 90◦ Prime 180◦ 6 φ 6 270◦
b 90◦ 6 ψ 6 150◦ Double prime otherwise

j 150◦ 6 ψ 6 270◦

Table 3. Ground state and extended conformation of unsolvated tetra-alanine

Minimum Classification E (kcal/mole) F (kcal/mole)

min.1 aaaa −6.643 −11.798

min.1587 bbbb 4.916 −5.549

Table 4. Selected results fromαBB tetra-alanine runs

Region Type Eigenmode III αBB α

aaaa min 1 1 25

bbbb min 1 1 20

1st 4 4

2nd 6 6

3rd 4 4

4th 1 1

bibi min 1 1 20

1st 1 2

2nd 0 1

bbbj′ min 2 2 20

1st 8 9

2nd 4 17

3rd 3 16

4th 2 7

5th 0 1

aai′i min 2 2 80

1st 1 1
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‘b’. Each conformation of tetra-alanine is characterized by four(φ,ψ) pairs, and
hence can be classified by a concatination of four symbols.

Of the 62373 minima, we found one alpha-helical conformation, min.1 (aaaa),
and one extended conformation, min.1587 (bbbb). Their potential energy and free
energy values can be found in Table 3. The alpha-helix conformation is the low-
est energy conformation of tetra-alanine. We will be concentrating on the folding
process from the extended conformation to the ground state.

We checked theαBB algorithm against the Eigenmode III search for stationary
points by conductingαBB runs on selected regions of the potential energy surface.
Selected results are given in Table 4. We started with a constant value ofα = 20,
and then increasedα in subsequent runs until we found all stationary points located
by the Eigenmode III search. In all cases, modest values ofα (less than 100) were
sufficient to locate all minima and first-order saddles found by Eigenmode III. In
many cases, additional saddle points were located.

Having now identified the local minima and first-order transition states, we are
now in a position to enumerate the reaction pathways between states and calculate
transition rates. The connectivity between the various minima is determined by fol-
lowing each transition state back to the minima they connect. This is accomplished
by perturbing the transition state slightly in each of the two directions along the
reaction coordinate, and then using Eigenmode III to locate a local minimum from
that starting point. This gives us a list of (minimum, transition state, minimum)
triples.

We can then calculate the transition rate matrix using Rice-Ramsperger-Kassel-
Marcus (RRKM) theory (see [1] for a more complete discussion). According to
RRKM theory, the transition rate for a single transition is given by

Wj ′→ts→j = kT

h

Qts

Qj ′
. (5)

The partition functions at the minima and first-order saddles are related to the
free-energies of those stationary points, and can be evaluated using the harmonic
approximation

Q = e−F/kT = e−E/kT
∏
i

kT

hνi
, (6)

whereE andF are the potential energy and free energy, respectively, of the sta-
tionary point, andνi are the vibrational frequencies of the molecule around the
stationary point. The product over frequencies takes into account the vibrational
entropy of the system. Substituting (6) into (5) yields

Wj ′→ts→j =
∏
i ν

j ′
i∏

i 6=r.c. ν
ts
i

e−(Ets−Ej ′ )/kT .
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Summing over all transition states connecting two particular minima yields the
transition rate matrix

Wjj ′ =
∑

ts

Wj ′→ts→j .

The time-evolution of occupation probabilities can be calculated by solving the
Master equation

dPj

dt
= wjj ′Pj ′(t), (7)

where

wjj ′ =
{
Wjj ′ if j 6= j ′
−∑j ′′ Wj ′′j if j = j ′.

Coupled differential equations like (7) are solved by diagonalizing the matrixwjj ′ ,
so that∑

j ′
wjj ′u

(i)

j ′ = λ(i)u(i)j .

The general solution to (7) can be written in the form

Pj (t) =
∑
i

aie
λ(i)tu

(i)
j , (8)

where the coefficientsai are determined by the initial probability distribution at
t = 0.

One of the eigenvaluesλ(0) is zero. The associated eigenvector corresponds to
the equilibrium (t = ∞) probability distribution,

u
(0)
j = Pj (+∞) = Qj/

∑
j ′
Qj ′ .

All other eigenvalues are negative, and correspond to transient probabilities with a
decay time ofτ (i) = −1/λ(i).

The time-evolution of occupation probabilities for the extended conformation
and the 3 lowest free energy states of unsolvated tetra-alanine at room temperature
T = 300 K, starting with the extended conformation att = 0 (i.e.,Pbbbb(0) = 1,
all otherPj(0) = 0) is given in Figure 1. It takes tetra-alanine about 10−10 s to
reach the ground state from the extended conformation.1

Details of the folding process can be determined by enumerating the pathways
from the extended conformation to the ground state. A pathway is defined as a
sequence of minima joined together by transition states.

initial state→ ts→ min→ ts→ min→ . . .→ min→ ts→ final state
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Figure 1. Time evolution of the extended conformation and the 3 lowest free energy states of
unsolvated tetra-alanine atT = 300 K.

Pathways between these two states can be enumerated using graph-theory tech-
niques. We construct a graph where each node in the graph represents a minimum
and each edge in the graph represents a transition state which connects two minima.
The set of all pathways which from one minimum to another can be generated by
an exhaustive search.

If we conduct this exhaustive search without restriction, we would generate
an enormous number of pathways. It is important for us to be able to restrict the
pathways we generate in a sensible manner. We selected pathways based on two
criteria: (1) we restrict the length of the pathway (i.e., number of minima) to be less
than or equal to some prescribed maximum length, and (2) we also apply a trans-
ition rate cutoff, effectively ignoring transitions whose rates fall below the cutoff
value. The number of pathways from the extended conformation to the ground
state of unsolvated tetra-alanine atT = 300 K for various length and rate cutoffs is
given in Table 5. The total number of minima and transition states involved in such
pathways are given in Table 6.

These two criteria were applied in an attempt to find the most relevant pathways.
Since the faster pathways are likely to be the most important ones, it makes sense
to eliminate pathways which involve one or more slow transitions (i.e., transitions
which fail to meet the rate cutoff). The length cutoff is chosen for more practical
reasons. Even with a transition rate cutoff, the number of pathways increases expo-
nentially with the length cutoff (about a factor of 10 for each additional minimum).
An exhaustive pathway search would be intractable if we did not impose a length
cutoff. It is assumed that the fastest pathways are also among the shortest in length.
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Table 5. Number of pathways from extended conformation to ground state with given length
restriction and rate cutoff

Maximum

length No cutoff 106 Hz 107 Hz 108 Hz 109 Hz 1010 Hz 1011 Hz

6

7 4

8 38

9 999 421 421 421 421 285 130

10 19963 10836 10828 10828 10733 7443 2099

11 297974 150831 150396 149391 146493 92216 21004

12 4132256 1868821 1859469 1832692 1768736 1002874 221592

Table 6. Number of minima / transition states involved in pathways from the extended conformation
to ground state with given length restriction and rate cutoff

Maximum

length No cutoff 106 Hz 107 Hz 108 Hz 109 Hz 1010Hz 1011Hz

6

7 12/ 14

8 26/ 42

9 236/ 488 96/ 183 96/ 183 96/ 183 96/ 183 86/ 160 65/ 114

10 886/ 2339 339/ 952 339/ 951 339/ 951 332/ 932 287/ 790 188/ 466

11 2817/ 8341 664/2177 663/2173 657/2152 651/2120 526/1696 357/1044

12 6403/21316 943/3405 938/3388 922/3341 913/3291 754/2622 509/1699

Although we have no proof of this,2 we will see evidence later on that suggests that
we have found the most relevant pathways.

We examined in detail the pathways of length 9 and 10 with a transition rate
cutoff of 106 Hz. An example pathway of length 9 is given in Figure 2.

For each such pathway, we estimated the amount of time it would take for tetra-
alanine to proceed from the extended conformation to the ground state along that
particular pathway by solving the Master equation for a reduced system consisting
only of the minima and transition states involved in the pathway. The decay time
of the longest lived transient probabilities was used as an estimate of the overall
transition time. The fastest transition times were on the order of 5× 10−11 s, and
most of the 10836 pathways we looked at had transition times less than 1×10−9 s.
Clearly there is no single most important pathway: there are many pathways which
are all equally important. We also found that the pathways of length 9 tended to
be among the fastest of the pathways of length 10 or less, suggesting that shorter
pathways tend to be faster.
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Figure 2. One possible pathway from the extended conformation to the ground state of
unsolvated tetra-alanine.
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We also studied the pathways of length 10 or less in terms of changes in theφ

andψ angles. Each(φ,ψ) pair is classified according to Table 2. In proceeding
from the extended conformation to the ground state, each of the four(φ,ψ) pairs
must proceed from ‘b’ to ‘a’. We observed that this process tends to follow regular
patterns.

We make the following general observations regarding the rotation of theψ

angles:
1. Eachψ angle normally progresses in the sequence b→ i → a or b→ j →

i→ a.
2. No direct b→ a transitions are observed,3 indicating that a rotation ofψ from

beta-sheet to alpha-helical values is too large for a single transition.
3. Most pathways of length 10 or less involve at least one transition where more

than oneψ angle changes (cooperative motion).
4. A wide variety of cooperative motion is possible, but the two most common

types are as follows:

bi→ ia 36%

bj→ ii 14%

5. There is a tendency for one half of the molecule to fold (nearly) completely
followed by the other half (e.g., bbbb→ bbaa→ aaaa).4

We can analyze the pathway given in Figure 2 in terms of these observations.
The individualψ angles proceed as follows:

ψ1 : b→ i→ a

ψ2 : b→ j→ b→ i → a

ψ3 : b→ j→ i → a

ψ4 : b→ i→ a

Except for a slight backtrack inψ2, this pathway is consistent with (1) and (2).
This pathway also exhibits 3 transitions which involve cooperative motion. Two of
them are in the form bi→ ia, which is the most common form observed. The other
cooperative motion, ji→ ba (non-adjacent alanines), has also been observed but is
not nearly as common as the two forms listed above. Finally, it should be remarked
that this pathway does pass through a bbaa minimum. In other words, the right side
(the carboxyl terminus) folds completely before the left side (the amino terminus)
folds at all. Not all pathways follow this rule strictly, although we have found that
tetra-alanine tends to fold its right side most of the way before its left side makes
significant progress.

The rotation of theφ angles plays less of a role in the folding process than
rotation ofψ angles.φ takes on similar values for alpha-helical and beta-sheet
conformations. We found that the very slowest transitions (on the order of 100 Hz
or less) tend to involve rotations of theφ angles from inside to outside of the range
180◦ 6 φ 6 330◦ and vice versa. In fact, none of the minima involved in pathways
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Figure 3. Complete rate disconnectivity graph for unsolvated tetra- alanine atT = 300 K. The
alpha-helical ground state and the extended conformation both lie in the highlighted subtree.

of any length with a rate cutoff of 106 Hz involvesφ angles outside this range
(they would indicated in our classification scheme by a double-prime). This can be
proved rigorously by examination of the rate disconnectivity graph, which we will
discuss next.

We constructed the rate disconnectivity graph for tetra-alanine atT = 300 K.
It is shown in Figure 3. The rate disconnectivity graph provides us with the rate-
dependent connectivity of the potential energy surface [1, 9, 10]. If we begin at the
top of the graph, with a very small rate cutoff, all of the minima fall into one group
which is represented by a single node. As we increase the rate cutoff, transitions get
eliminated. At some point, a critical transition gets eliminated which disconnects
the minima into two groups. This is represented by the node splitting into two at the
rate cutoff value. As the rate cutoff is increased further, more and more transitions
are eliminated and the graph continues to bifurcate as the groups of minima further
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subdivide. At the base of the graph, no transitions remain, and each minimum falls
into its own group. The minima can be identified at the base of the graph.

The rate disconnectivity graph for tetra-alanine shown in Figure 3 covers 23
orders of magnitude in transition rates, and contains 62357 minima.5 Starting at the
top, we see that a relatively small number of minima break away as the rate cutoff
is increased to around 10 Hz. Between 10 Hz and 100 Hz, a number of large groups
of minima (several thousand minima each) break away from the main branch,
indicating a great deal of interesting dynamics occuring on a time scale of about
0.1 s. Between 102 Hz and 1010 Hz relatively little happens. There seems to be two
well-separated time scales with characteristic times roughly 0.1 s and 10−10 s.

The highlighted section of the rate disconnectivity graph contains a total of 3713
minima, including the extended conformation and the alpha-helical ground state. If
we apply a transition rate cutoff anywhere between 102 Hz and 1010 Hz, we would
find that all of the minima in the highlighted region would be connected to one
another, and disconnected from all of the rest. In other words, it would take about
10−10 sec to make transitions between two minima within this group, and about
10−2 sec to make transitions out of this group. This is consistent with our solution
of the master equation (see Figure 1).

We looked for a distinguishing characteristic of the minima within this group.
We found that all 3713 minima in this group satisfy the constraints

180◦ 6 φi 6 330◦

for all four φ angles. Conversely, we found that all except for one minimum which
satisfies these constraints on all fourφ angles lies within this group. This leads us
to the following conclusions:
1. Transitions involving large changes inφ (from within [180◦,330◦] to out-

side this range, or vice versa), tend to be very slow, requiring longer than
0.01 sec (sometimes much longer). This is no doubt a result of very high
barriers separating these two regions of configuration space.

2. Transitions involving small changes inφ (i.e., those which stay within the
range[180◦,330◦]), and arbitrary changes inψ , tend to be much faster, typic-
ally on the order of 10−10 sec. The folding of tetra-alanine from its extended
conformation (bbbb) to the ground state (aaaa) falls into this catagory.

Another way of obtaining an overall picture of the folding process of tetra-
alanine is to study the time-evolution of averages of certain quantities, such as en-
ergy, dihedral angles, or distances between specific atoms. Ifqj is the value of some
quantity at minimumj , then〈q〉, the average value ofq, andσq , the standard devi-
ation, can be calculated as a function of time with the help of the Master equation:

〈q〉(t) =
∑
j

Pj (t)qj =
∑
i,j

aie
λ(i)t u

(i)
j qj

=
∑
i

ai

(∑
j

u
(i)
j qj

)
eλ

(i)t (9)
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Figure 4. Time-evolution ofE as a function of time (average± one standard deviation), given
that the system occupies the extended conformation att = 0 s. Various pathway length cutoffs
are employed.

〈q2〉(t) =
∑
i

ai

(∑
j

u
(i)
j q

2
j

)
eλ

(i)t (10)

σq(t) =
√
〈q2〉(t)− 〈q〉2(t) (11)

Plots of〈q〉 and〈q〉 ± σq as functions of time forq = E,φi , andψi are given in
Figures 4–12.

To obtain the correct time evolution of〈q〉 andσq , it is necessary to solve the
Master equation over all of the minima.6 We can also calculate the approximate
time evolution of〈q〉 andσq by restricting our attention to only a certain subset
of pathways. This is accomplished by restricting the minima and transition states
we use to solve the Master equation to those which are visited by the selected
pathways.

In Figures 4–12, we compare the overall time evolution ofE, φi andψi with
the time evolution obtained by restricting our attention to pathways with various
length restrictions. The deviations are rather large for a length cutoff of 10, but are
much smaller for a length cutoff of 11 or 12. It appears that applying a length cutoff
of 11 will yield most of the relevant pathways.

We can also determine the effect of various transition rate cutoffs on the time
evolution ofE, φi , andψi. In Figures 13–21, we compare the overall time evolution
of E, φi , andψi with that obtained by restricting our attention to pathways with a
length cutoff of 11 and various transition rate cutoffs. We find significant deviation
from the overall time evolution only when the transition rate cutoff is increased to
1011 Hz. It appears that the most significant pathways are those of length 11 or less
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Figure 5. Time-evolution ofφ1 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.

which satisfy a transition rate cutoff of 1010 Hz. There are 92216 such pathways,
and they involve only 526 minima and 1696 transition states. This is significantly
less than the 62373 minima and 212938 transition states we started with.

It would be useful to characterize the folding process by means of determining
a viable reaction coordinate. A reaction coordinate is a quantity which accurately
measures the progress from the initial state to the final state. Ideally, it should be
monotonic and proceed at a uniform rate along each individual pathway. If we
examine the time evolution ofE, φi , andψi, we see that the energy and theψ
angles seem to make reasonable reaction coordinates, but theφ angles definitely
do not. However, these plots only reveal the average progress of these quantities.
What we would really like to know is which, if any, of these quantities proceeds
monotonically and uniformly foreachpathway.

To help answer this question, we developed two ‘reaction coordinate indicators’,
one which measures the monotonicity of the reaction coordinate, and the other
which measures the uniformity of the reaction coordinate. For a given pathway of
lengthN

min1→ min2→ . . .→ minN

a certain quantityq takes on values

q1→ q2→ . . .→ qN .
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Figure 6. Time-evolution ofψ1 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.

The two reaction coordinate indicators ared/D andD2/S, where

d =
∣∣∣ N−1∑
i=1

(qi+1 − qi)
∣∣∣ (displacement)

D =
N−1∑
i=1

|qi+1 − qi | (distance)

S = (N − 1)
N−1∑
i=1

|qi+1 − qi |2 (squared distance)

d/D measures the monotonicity ofq along the given pathway, andD2/S measures
the uniformity ofq along the given pathway. Both indicators take the value 1 in the
ideal case.

For each of the quantitiesE, φi andψi , we tabulated the average value and
standard deviation of these two reaction coordinate indicators over the 92216 rel-
evant pathways in Table 7. As expected, theφ angles perform poorly on the mono-
tonicity test (d/D is very small), whereas the energy and theψ angles perform
reasonably well on the monotonicity test. However, none of the quantities do very
well on the uniformity test: the average value ofD2/S is around 0.30 for each of
the dihedral angles and around 0.48 for the energy. This suggests that changes in
a given dihedral angle tend to occur in a small number of big steps, rather than in
a large number of small steps. This is consistent with our earlier pathway analysis,
where we found that theψ angles tend to change one or two at a time.
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Figure 7. Time-evolution ofφ2 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.

Figure 8. Time-evolution ofψ2 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.
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Figure 9. Time-evolution ofφ3 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.

Figure 10. Time-evolution ofψ3 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.
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Figure 11. Time-evolution ofφ4 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.

Figure 12. Time-evolution ofψ4 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. Various pathway length
cutoffs are employed.



DYNAMICS OF PEPTIDE FOLDING 281

Figure 13. Time-evolution ofE as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.

Figure 14. Time-evolution ofφ1 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.
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Figure 15. Time-evolution ofψ1 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.

Figure 16. Time-evolution ofφ2 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.
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Figure 17. Time-evolution ofψ2 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.

Figure 18. Time-evolution ofφ3 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.
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Figure 19. Time-evolution ofψ3 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.

Figure 20. Time-evolution ofφ4 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.
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Figure 21. Time-evolution ofψ4 as a function of time (average± one standard deviation),
given that the system occupies the extended conformation att = 0 s. A pathway length limit
of 11, along with various transition rate cutoffs, are employed.

Table 7. Average and standard deviation values of the reaction
coordinate indicatorsd/D andD2/S for various quantities over
all pathways of length 11 or less with transition rates exceeding
1010Hz from the extended conformation to the ground state of
unsolvated tetra-alanine

d/D D2/S

Quantity average std average std

E 0.796 0.099 0.482 0.144

φ1 0.224 0.138 0.291 0.080

ψ1 0.899 0.120 0.256 0.060

φ2 0.032 0.034 0.304 0.077

ψ2 0.850 0.100 0.283 0.051

φ3 0.081 0.081 0.332 0.084

ψ3 0.867 0.129 0.298 0.071

φ4 0.046 0.038 0.302 0.075

ψ4 0.849 0.132 0.293 0.059∑
i ψi 0.927 0.066 0.749 0.066

dα1,α4 0.674 0.138 0.355 0.115

d1 0.762 0.129 0.467 0.098

d2 0.712 0.111 0.523 0.142

d1 + d2 0.818 0.103 0.587 0.133
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Figure 22. Time-evolution of
∑
i ψi as a function of time (average± one standard deviation),

given that the system occupies the extended conformation att = 0 s. solid curve shows the
overall time evolution, and dotted line shows time evolution with a pathway length limit of 11
and a transition rate cutoff of dotted 1010 Hz.

It is clear that progress towards the alpha-helical ground state should not be
measured in terms of a singleψ angle, but should reflect the progress ofall ψ
angles. This suggests that we might look at

∑
i ψi as a reaction coordinate. The

time evolution of
∑

i ψi is plotted in Figure 22, and the average value and standard
deviation of the reaction coordinate indicators are given in Table 7. The average
value of the reaction coordinate indicators,d/D = 0.927 andD2/S = 0.749, both
indicate very strongly that

∑
i ψi makes a good reaction coordinate. To confirm

this, we constructed a scatter plot ofD2/S vs.d/D for each of the 92216 pathways,
shown in Figure 23. For most of the pathways, the reaction coordinate indicators
are both near 1, further suggesting that

∑
i ψi makes a good reaction coordinate.

Further insight into the folding process may be gained by looking for a simpler
reaction coordinate. An alpha-helix is stabilized by the formation of hydrogen
bonds between thei and i + 3 residues. Since these residues tend to be farthest
apart in the extended conformation, and must be brought close together to form the
hydrogen bond, it makes sense to use the hydrogen bonding distance as a reaction
coordinate.

We first trieddα1,α4, the distance between the first and fourthα-carbons. This
distance is indicated in Figure 24. This distance varies from 9.079 Å in the extended
conformation to 4.998 Å in the ground state. The alpha-helical ground state is not
the only conformation withdα1,α4 < 5.0 Å. Of the 526 minima involved in the
92216 relevant pathways, 26 of them satisfy this inquality.

The distance betweenα-carbons is only a crude measure of hydrogen bonding.
A more direct measure is the distance between the nitrogen-bonded hydrogen atom
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Figure 23. Scatter plot of reaction coordinate indicators for
∑
i ψi for each pathway. Only

pathways of length 11 or less with all transition rates exceeding 1010 Hz are used (92216
pathways).

and the oxygen atom which shares it. It turns out there are two candidate hydrogen
bonding distances, as indicated in Figure 24. These distances in the ground state are
d1 = 1.934 Å andd2 = 1.921 Å. It turns out that neither distance alone uniquely
determines the ground state. Of the 526 relevant minima, 9 of them satisfyd1 < 2 Å
and 7 of them satisfyd2 < 2 Å. However, only the ground state satisfies both
inequalities. Apparently there are two hydrogen bonds which stabilize the alpha-
helix in tetra-alanine.

We plotted four distance parameters related to hydrogen bonding,dα1,α4, d1,
d2, andd1 + d2, as functions of time in Figures 25–28, and tabulated the average
value and standard deviation of the reaction coordinate indicators in Table 7. The
motivation of includingd1 + d2 among the distance parameters is similar to that
of including

∑
i ψi. Since there are two hydrogen bonds to form, it makes sense

that reaction progress should be measured bybothhydrogen bond distances. Any
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Figure 24. Alpha-helical ground state of unsolvated tetra-alanine, with the hydrogen bonds
indicated.

Figure 25. Time-evolution ofdα1,α4 as a function of time (average± one standard deviation).
Given that the system occupies the exended conformation att = 0 s. Solid curve shows the
overall time evolution, and dotted line shows time evolution with a pathway length limit of 11
and a transition rate cutoff of 1010 Hz.

of the four distance parameters would make a reasonable reaction coordinate, but
d1+ d2 is clearly the best withd/D = 0.818 andD2/S = 0.587. A scatter plot of
D2/S vs.d/D for d1 + d2 is given in Figure 29.
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Figure 26. Time-evolution ofd1 as a function of time (average± one standard deviation).
Given that the system occupies the exended conformation att = 0 s. Solid curve shows the
overall time evolution, and dotted line shows time evolution with a pathway length limit of 11
and a transition rate cutoff of 1010 Hz.

Figure 27. Time-evolution ofd2 as a function of time (average± one standard deviation).
Given that the system occupies the exended conformation att = 0 s. Solid curve shows the
overall time evolution, and dotted line shows time evolution with a pathway length limit of 11
and a transition rate cutoff of 1010 Hz.
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Figure 28. Time-evolution ofd1+d2 as a function of time (average± one standard deviation).
Given that the system occupies the exended conformation att = 0 s. Solid curve shows the
overall time evolution, and dotted line shows time evolution with a pathway length limit of 11
and a transition rate cutoff of 1010 Hz.

Table 8. Eigenmode III results for solvated tetra-alanine

68 grid

Local minima 66228

1st-order saddles 195639

5. Computational studies: Solvated tetra-alanine

We next studied tetra-alanine in solvation. We used the ECEPP/3 potential energy
surface [11] coupled with the volume method for calculating solvation energies
using the Reduced Radius Independent Gaussian Sphere (RRIGS) approximation
[18].

We determined the minima and first-order saddles by applying a brute force
eigenmode-following search (Eigenmode III) with a 68 grid of start points, just

Table 9. Ground state and extended conformation of solvated tetra-alanine

Minimum Classification E (kcal/mole) F (kcal/mole)

min.1 aaaa −35.249 −40.741

min.874 bbbb −30.823 −41.194



DYNAMICS OF PEPTIDE FOLDING 291

Figure 29. Scatter plot of reaction indicators ford1+ d2 for each pathway. Only pathways of
length 11 or less with all transition rates exceeding 1010 Hz are used (92216 pathways).

as we did for unsolvated tetra-alanine. The results of this search can be found in
Table 8.

Of the 66228 minima, we found one alpha-helical conformation, min.1 (aaaa),
and one extended conformation, min.874 (bbbb). The potential energy (which in-
cludes the solvation energy) and free energy (which includes the vibrational en-
tropy) of these two states can be found in Table 9.

The first thing to notice is that, although the alpha-helical conformation has the
lowest potential energy (and hence lowest free energy atT = 0 K), the extended
conformation has a lower free energy at room temperature (T = 300 K) than the
ground state. The result of adding solvation energy reduces the energy gap from
11.6 kcal/mole to 4.4 kcal/mole. The entropic term in the free energy is more than
enough to overpower this energy gap and reduce the free energy of the extended
conformation below that of the alpha-helical ground state. This has significant
implications.
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Figure 30. Time evolution of the extended conformation and the 300 lowest free energy states
of solvated tetra-alanine atT = 300 K. No single state has an equilibrium probability which
exceeds 0.004.

We calculated the free energies of all the minima using the harmonic approx-
imation (this is discussed in the previous section) in order to determine the equilib-
rium probability distribution. We found that the several hundred lowest free energy
minima have about the same free energy, and that no single minimum has an equi-
librium occupation probability which exceeds 0.004. This is in stark contrast with
unsolvated tetra-alanine, where the ground state had an equilibrium occupation
probability of 0.748, and the lowest 3 potential energy states accounted for 0.936
of the total equilibrium probability.

As a check, we calculated the transition rate matrix for solvated tetra-alanine at
T = 300 K, and solved the Master equation starting with the extended conform-
ation att = 0 s. We plotted the time evolution of the occupation probabilities of
the 300 lowest free energy states. That plot is given in Figure 30. The equilibrium
probability distribution is achieved in about 10−10 s.

It seems likely that solvated tetra-alanine exhibits liquid-like behavior atT =
300 K. To be sure, we need to verify that the several hundred minima which share
the equilibrium probability distribution do not occupy the same region of config-
uration space. If that were the case, the potential energy surface would have one
deep basin with a rough bottom. The true characteristics of a liquid-like molecule is
that it randomly (and quickly) samples widely distinct configurations. In Figure 31,
we plotted the distribution of minima on four(φ,ψ) plots. Our conclusion is that
the minima which share the equilibrium probability distribution do occupy distinct
regions of configuration space.
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Figure 31. Scatter plot for solvated tetra-alanine. Dot size is proportional to equilibrium
probability.

If solvated tetra-alanine is to be liquid-like atT = 300 K, then there must be a
phase transition. This should show up as a peak in the heat capacity versus temper-
ature plot. The heat capacity can be calculated by calculating energy fluctuations
at equilibrium

Cv = d

dT
〈E〉eq=

〈E2〉eq− 〈E〉2eq

kT 2

where equilibrium averages may be calculated from free energies

〈q〉eq=
∑

i qie
−Fi/kT∑

i e
−Fi/kT
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Figure 32. Heat capacity as a function of temperature for solvated tetra-alanine.

Figure 33. Heat capacity as a function of temperature for unsolvated tetra-alanine.

We calculatedCv as a function ofT for temperatures ranging from (just above)
0 K to 1000 K for both solvated and unsolvated tetra-alanine. The plots are given
in Figures 30 and 31. The transition temperatures are given by

T solv
sol-liq = 130 K T unsolv

sol−liq = 395 K
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The lower transition temperature for solvated tetra-alanine can be traced back to
the reduction in the energy gap between the alpha-helical ground state conforma-
tion and the other higher energy states, including the extended conformation, and
indeed do explain the appearance of liquid-like behavior for solvated tetra-alanine
(but not for unsolvated tetra-alanine) atT = 300 K.

6. Conclusions

Determining all stationary points of a potential energy surface is the critical first
step in analyzing its topography. The proposedαBB algorithm provides a theor-
etical guarentee of finding all stationary points of a potential energy surface. We
explored several regions of the potential energy surface of tetra-alanine using both
a brute force eigenmode-following search and the proposedαBB algorithm. In all
cases,αBB found all of the minima and first and higher-order saddles located by
the eigenmode-following search, and in many cases, found additional transition
states.

Once we have all of the minima and transition states, we analyzed the potential
energy surfaces of both unsolvated and solvated tetra-alanine. We have developed
procedures for this analysis, which involves calculating min-saddle-min triples,
transition rates, time-evolution of occupation probabilities and average quantities,
pathways, and the rate disconnectivity graph. We also developed two reaction co-
ordinate indicators to help us determine whether a given quantity makes a good
reaction coordinate or not.

For unsolvated tetra-alanine, we found a total of 62373 minima and 212938
first-order transition states, including an alpha-helical structure and an extended
conformation. The alpha-helical structure is the ground state.

We found that most of the interesting dynamics can be reproduced by restricting
our attention to the pathways between the extended conformation and the ground
state which are of length 11 or less with transition rates exceeding 1010 Hz. This
limits us to 92216 pathways which involve only 526 minima and 1696 transition
states, a substantial reduction from the 62373 minima and 212938 transition states
we started out with.

We were able to characterize the most important pathways and determined that
most of these pathways involved cooperative motion, and that most pathways pass
through a state where the carboxyl side of the molecule is mostly folded and the
amino side of the molecule is mostly extended.

We also constructed the rate disconnectivity graph and found that unsolvated
tetra-alanine involves transitions on two widely separated time scales: large rota-
tions inφ angles account for the slow transitions (on the order of 0.01 s or longer),
and small rotations inφ account for fast transitions (on the order of 10−10 s).

We applied our two reaction coordinate indicators to several quantities, in-
cluding energy, theφ andψ angles, as well as distances between atoms which
characterize the hydrogen bonds formed in the alpha-helical ground state.
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Of all the quantities we looked at, we determined that
∑

i ψi provided the best
reaction coordinate, most accurately representing the progress from the extended
conformation to the ground state along each of the 92216 most important pathways.
The sum of the two hydrogen bond distances,d1 + d2, also would make a suitable
reaction coordinate.

For solvated tetra-alanine, we found a total of 66228 minima and 195639 first-
order transition states. We found that, unlike unsolvated tetra-alanine, several hun-
dred minima (occupying widely varying regions of configuration space) share the
equilibrium probability distribution atT = 300 K, which is characteristic of a
liquid-like molecule. We confirmed this by plottingCv vs.T for both solvated and
unsolvated tetra-alanine.
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Notes

1. This is about a factor of 10 faster than we concluded in [1]. This speed-up is most likely due to
the 11-fold increase in the number of transition states located.

2. In fact, the very shortest pathways are all very slow, as indicated by Table 5.

3. This has been checked rigorously for all pathways length 11 or less with a rate cutoff of 106 Hz.
What we have in fact found is that there are transition states which connect two minima b→ a,
but either the transition itself is very slow, or else the minima are so high in energy that it seems
unlikely that a fast pathway (ofany length) could pass through it. Our conclusion is that b→ a
is not observed for all but the very slow pathways.

4. The last 3 observations are in stark contrast with the observations we made about the pathways
of tetra-alanine in [1], which were based on the minima and transition states obtained from the
48 grid search. In that paper, we found very little cooperative motion and had also concluded
that most of the alanines fold halfway before any of them folds the rest of the way (e.g.,
bbbb→ iiii → aaaa). This illustrates very clearly the importance of findingall minima and
transition states, or at least the most important minima and transition states, before analyzing the
potential energy surface. Still, we were surprised with how different the pathways were when we
analyzed the results of the 68 grid. Since very few low-lying minima were added by that search,
the changes must be mostly due to the additional transition states available to the system. The
transition states allowing for cooperative motions of the different amino groups must have been
systematically overlooked as a result of the particular 48 grid we selected.

5. The remaining 16 minima are not connected to the main group by any transition states at all.

6. Actually, we only solve the Master equation over the 3713 minima in the highlighted region of
the rate disconnectivity graph shown in Figure 2. This is necessary because solving the Master
equation for all 62373 minima would require diagonalizing a 62373× 62373 matrix which
does not fit in computer memory. Fortunately, it is also sufficient since the other minima are
unreachable during times on the order of 10−9 sec.
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